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1. DERHAM COHOMOLOGY

1.1. Definition of DeRham Cohomology.
Let M be a smooth n-dimensional manifold. Let Q¥(M) be the vector space of differential k-forms on M. Recall
that the wedge product is a map A : QF(M) x QY(M) — QF¥+(M) and define

0 (M) = @ Q" (M).
k=0
Together with the wedge product Q*(M) is an associative, anticommutative, graded algebra.

Now let’s define another map called the exterior derivative:

Theorem 1 (The Exterior Derivative). Let M be a smooth manifold. For each integer k > 0 there are unique linear

maps
d: QF(M) — QL (M)
satisfying:
(1) If f : M — R is smooth (i.e. f € Q°(M)), then df is the differential of f, defined by

df (X) = X(f)
where X is a smooth vector field on M.
(2) Ifw e QF(M) and n € QY (M), then

d(wAn) =dwAn+ (—1)Fw A dy
(3) d* =0.

One more definition before interesting stuff!

Definition 1 (Closed and Exact Forms). Let w € QF(M). We say that w is a closed k-form if dw = 0. If w = dn
for some n € QF~L(M) then we say that w is an exact k-form.

Notice that every exact k-form is closed.

Notice that (Q*(M), d) forms the following chain complex of vector spaces:
i 0 — QM) -5t M) S 02(M) L L QM) — 00— -
(recall that M is an n-manifold and that there are no k-forms on an n-manifold where & > n). Observe for a moment
the map d : Q% (M) — QFT1(M). Notice the following two things:
Ck(M) = Ker d = {closed k-forms on M}
and
EMY(M) = Tm d = {exact k + 1-forms on M}.

From the comment above that every exact k-form is a closed k-form, we see that £¥(M) C C¥(M). Since (Q*(M),d)
is a chain complex, we can speak of the cohomology (since d is a degree increasing map) of this complex:

Definition 2 (deRham Cohomology). Let (Q2*(M),d), Ck(M), and E¥(M) be defined as above. Define the ¢*"
deRham cohomology vector space of M by

Hi (M) =CI(M)/EY(M) = {closed q-forms on M}/{exact q-forms on M}.
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1.2. Examples of DeRham Cohomology Spaces.
Example 1 (Zero-Dimensional deRham Cohomology). M a connected smooth manifold,

HY5 (M) = {constant functions f : M — R} 2R

Example 2 (deRham Cohomology of Zero-Manifolds). M a 0-manifold, then dim H}, (M) = o(M) and Hip(M) =0
for all ¢ > 1.

Computation. Since M is a 0-manifold it is a discrete set, hence we may think of M = |_| {m}. Then, the inclusion
meM
maps tp, : {m} < M induce an isomorphism:

HC(J)R(M) = HgR( |_| {m}) = H HgR({m}) = H R

meM meM meM

Hence dim H, (M) = o(M). Moreover, since there are no g-forms on M for ¢ > 1, it is impossible for Hi, (M) to
be nonzero for anything but g = 0. ]

Theorem 2 (The Poincaré Lemma). Let U be a star-shaped open subset of R™. Then Hj,(U) =0 for ¢ > 1.

Proof. Suppose that ¢ > 1 and that U is star-shaped with respect to a point p € U. Then U is a contractible space.
By the homotopy invariance of the deRham cohomology, Hi,(U) = Hi,({p}). The previous example shows that
H}.(U)=0. O

Corollary 1. For allg>1, Hj,(R™) = 0.

Example 3 (deRham Cohomology of Spheres). For n > 1, the deRham cohomology groups of S™ are:

R, ¢g=0,n
q ny __ ’ )
Hip(5") = { 0, otherwise

1.3. The Cup Product.

Proposition 1. Let M be a smooth n-manifold and let w € QP(M) and n € QM) be closed forms. Then the
deRham cohomology class of w An depends only on the deRham cohomology classes of w and 7.

Corollary 2. There is a well-defined bilinear map:
it Hyp (M) x Hijp(M) — Hg;q(M)
given by
[w] =[] = [w AR

The map in the corollary gives us the deRham cohomology algebra.

1.4. DeRham Cohomology and Orientability.

For those of you who don’t remember this fundamental theorem:

Theorem 3 (Stokes’ Theorem). Let M be a smooth, oriented n-manifold with boundary, and let w be a smooth,
compactly supported, (n — 1)-form on M. Then
/ dw = / w.
M oM

We can also detect orientability using the top cohomology as follows:
First we define the integration map: I : QP(M) — R by I(w) = / w. Clearly I is a linear map. Because the

M
integral of any exact differential form is zero (by Stokes’ theorem), we get that I decends to a linear map on Hj, (M),
i.e., we now have a linear I : Hj,(M) — R. Necessarily we have that Q" (M) = C"(M) for an n-manifold M. Recall
that any orientable n-manifold has a nonvanishing n-form.



Proposition 2 (Top Cohomology and Orientability). Let M be a compact, connected, smooth n-manifold.
(1) If M is orientable, the map I : H}(M) — R is an isomorphism.
(2) If M is nonorientable, then H}p(M) = 0.

2. SMOOTH SINGULAR HOMOLOGY

Definition 3. If M is a smooth manifold, and A? is the standard q-simplex, define a smooth ¢-simplex in M
to be a smooth map o : A1 — M. (Smooth in the sense that at every point there is a smooth extension to an open

neighborhood of the point.) Denote the subset of Cq(M) generated by smooth q-simplices by C°(M) and call it the

¢""-smooth chain group. The elements of these groups are called smooth chains. Because of this, we may define

the ¢*" smooth singular homology group of M to be
HX(M) = Ker{0:C}(M)— C2i(M)}/ Im{0: C31(M) — C°(M)}.
Since the inclusion map ¢ : C;°(M) — Cy(M) commutes with 0, we get an induced map on homology ¢, :
HZ* (M) — Hy(M) given by t.([c]) = [t(c)]. In fact:
Theorem 4. For any smooth manifold M, the map v, : H*(M) — H,(M) induced by inclusion is an isomorphism.

Proof. See John Lee’s “Introduction to Smooth Manifolds” pgs.417-424. The basic idea of the proof is to get a
homotopy between a smooth g-simplex and a regular g-simplex using the Weierstraf smooth approximation theorem.
|

Curiously, it works out, much to our convienence, that H9(M;R) = Hom (H,(M),R) = Hom (H2°(M),R).

3. THE DERHAM THEOREM

For a smooth manifold M, w € Q?(M) and o € C;°(M), define the integral of w over o to be

oo

It is, in fact, because of this that we want to look as smooth simplices in M since we can only pull back a differential
form under a smooth map.

Theorem 5 (Stokes’” Theorem for Chains). If ¢ is a smooth g-chain in a smooth manifold M, and w is a smooth

(¢ — 1)-form on M, then
/ w:/dw.
Oc c

n:Hi(M)— HY(M;R)
called the deRham homomorphism and is defined by:

(i = [w

where [w] € Hj,(M), [c] € Hy(M) = H*(M), and ¢ is any representative of [c].

This theorem furnishes a linear map:

The deRham homomorphism is natural, that is, given a smooth map F' : M — N of manifolds, the following
diagram commutes:

an
HgR(N) - HgR(M)

| ]
HIY(N;R) > H9(M;R)
Before we can prove the main attraction, we need three definitions:

Definition 4 (deRham Manifold). We say a smooth manifold M is a deRham manifold if the map n : Hip(M) —
HY(M;R) is an isomorpism for each q. (This definition is diffeomorphism invariant by the naturality of 1).)
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Definition 5 (deRham Cover). If M is a smooth manifold, then an open cover {U;}icr is called a deRham cover
if each U; is a deRham manifold. A deRham cover that is also a basis for M is called a deRham basis of M.

Theorem 6 (The deRham Theorem). For every smooth manifold M and every q € Ny, the deRham homomorphism
n:Hjp(M)— HY(M;R) is an isomorpism.

Idea of Proof. This proof will be broken into 6 steps:
(1) If {M;};cs is any countable collection of deRham manifolds, then their disjoint union is deRham.

Use that fact that if M = |_| M;, the inclusion maps ¢; : M; — M induces an isomorphism from the
jed

cohomology of the disjoint union to the product of the cohomologies of each M; (both deRham and singular
cohomology). Then naturality preserves these isomorphisms.

(2) Every convex open subset of R™ is deRham.
Use the Poincaré lemma to get isomorphisms for ¢ > 0 and just show that both zeroth cohomologies are one
dimensional and that n is not the zero map here.

(3) If M has a finite deRham cover, then M is deRham.
Use induction on the number of open sets. Use the Mayer-Vietoris sequence on both deRham and singular
cohomology and link them with n which says that you get commutative squares, then use the five lemma.
For the case of a cover with 2 sets, Mayer-Vietoris gives:

Hip'(U) @ Hip (V) ——= Hip (UNV) —— Hip(M) ——— H{p(U) © Hip(V) ——— Hip(UNV)

HI"YU;R)® HY(V;R) —= HI" Y (UNV;R) —— HY(M;R) —— HY(U;R) ® HY(V;R) —— HY(U N V;R)

and by naturality of n all of these squares commute. By assumption the 1st, 2nd, 4th, and 5th n’s are
isomorphisms, so by the five lemma, since the Mayer-Vietoris sequences are exact, the 3rd must also be an
isomorphism.

(4) If M has a deRham basis, then M is deRham.
Use an exhaustion function (a continuous function f : M — R such that M, = {m € M | f(m) < ¢} is compact, in fact,
to construct a basis and use steps 1 and 3 to show it is a deRham basis and that M is deRham.

(5) Any open subset of R™ is deRham.
If U C R"” is open, then it has a basis consisting of open balls, which are convex as are their intersections.
Thus U is deRham by steps 2 and 4.

(6) Every smooth manifold is deRham.
Every smooth manifold has a basis of coordinate charts. Each coordinate chart is diffeomorphic to an open
subset of R™ (and their intersections are too). Thus every smooth manifold has a deRham basis by step 5,
and hence is deRham by step 4.

O

To conclude, let’s answer the question of why anyone should care about this:

Obviously this theorem establishes a connection between the topological and analytic properties of a smooth
manifold. For example, if one knows something about the topology of the manifold, you could infer things about
differential equations such as dw = 1 on M; and conversely.



