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1. DeRham Cohomology
1.1. Definition of DeRham Cohomology.

Let M be a smooth n-dimensional manifold. Let Ωk(M) be the vector space of differential k-forms on M . Recall
that the wedge product is a map ∧ : Ωk(M)× Ωl(M) −→ Ωk+l(M) and define

Ω∗(M) =

n⊕
k=0

Ωk(M).

Together with the wedge product Ω∗(M) is an associative, anticommutative, graded algebra.

Now let’s define another map called the exterior derivative:

Theorem 1 (The Exterior Derivative). Let M be a smooth manifold. For each integer k ≥ 0 there are unique linear
maps

d : Ωk(M) −→ Ωk+1(M)

satisfying:

(1) If f : M → R is smooth (i.e. f ∈ Ω0(M)), then df is the differential of f , defined by

df(X) = X(f)

where X is a smooth vector field on M .
(2) If ω ∈ Ωk(M) and η ∈ Ωl(M), then

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη
(3) d2 = 0.

One more definition before interesting stuff!

Definition 1 (Closed and Exact Forms). Let ω ∈ Ωk(M). We say that ω is a closed k-form if dω = 0. If ω = dη
for some η ∈ Ωk−1(M) then we say that ω is an exact k-form.

Notice that every exact k-form is closed.

Notice that (Ω∗(M), d) forms the following chain complex of vector spaces:

· · · −→ 0 −→ Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ · · · d−→ Ωn(M) −→ 0 −→ · · ·

(recall that M is an n-manifold and that there are no k-forms on an n-manifold where k > n). Observe for a moment
the map d : Ωk(M) −→ Ωk+1(M). Notice the following two things:

Ck(M) = Ker d = {closed k-forms on M}
and

Ek+1(M) = Im d = {exact k + 1-forms on M}.
From the comment above that every exact k-form is a closed k-form, we see that Ek(M) ⊂ Ck(M). Since (Ω∗(M), d)
is a chain complex, we can speak of the cohomology (since d is a degree increasing map) of this complex:

Definition 2 (deRham Cohomology). Let (Ω∗(M), d), Ck(M), and Ek(M) be defined as above. Define the qth

deRham cohomology vector space of M by

Hq
dR(M) = Cq(M)/Eq(M) = {closed q-forms on M}/{exact q-forms on M}.
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1.2. Examples of DeRham Cohomology Spaces.

Example 1 (Zero-Dimensional deRham Cohomology). M a connected smooth manifold,

H0
dR(M) = {constant functions f : M → R} ∼= R

Example 2 (deRham Cohomology of Zero-Manifolds). M a 0-manifold, then dimH0
dR(M) = o(M) and Hq

dR(M) = 0
for all q ≥ 1.

Computation. Since M is a 0-manifold it is a discrete set, hence we may think of M =
⊔
m∈M

{m}. Then, the inclusion

maps ιm : {m} ↪→M induce an isomorphism:

H0
dR(M) = H0

dR

( ⊔
m∈M

{m}

)
∼=
∏
m∈M

H0
dR({m}) ∼=

∏
m∈M

R

Hence dimH0
dR(M) = o(M). Moreover, since there are no q-forms on M for q ≥ 1, it is impossible for Hq

dR(M) to
be nonzero for anything but q = 0. �

Theorem 2 (The Poincaré Lemma). Let U be a star-shaped open subset of Rn. Then Hq
dR(U) = 0 for q ≥ 1.

Proof. Suppose that q ≥ 1 and that U is star-shaped with respect to a point p ∈ U . Then U is a contractible space.
By the homotopy invariance of the deRham cohomology, Hq

dR(U) ∼= Hq
dR({p}). The previous example shows that

Hq
dR(U) = 0. �

Corollary 1. For all q ≥ 1, Hq
dR(Rn) = 0.

Example 3 (deRham Cohomology of Spheres). For n ≥ 1, the deRham cohomology groups of Sn are:

Hq
dR(Sn) =

{
R, q = 0, n
0, otherwise

1.3. The Cup Product.

Proposition 1. Let M be a smooth n-manifold and let ω ∈ Ωp(M) and η ∈ Ωq(M) be closed forms. Then the
deRham cohomology class of ω ∧ η depends only on the deRham cohomology classes of ω and η.

Corollary 2. There is a well-defined bilinear map:

`: Hp
dR(M)×Hq

dR(M) −→ Hp+q
dR (M)

given by
[ω] ` [η] = [ω ∧ η].

The map in the corollary gives us the deRham cohomology algebra.

1.4. DeRham Cohomology and Orientability.
For those of you who don’t remember this fundamental theorem:

Theorem 3 (Stokes’ Theorem). Let M be a smooth, oriented n-manifold with boundary, and let ω be a smooth,
compactly supported, (n− 1)-form on M . Then ∫

M

dω =

∫
∂M

ω.

We can also detect orientability using the top cohomology as follows:

First we define the integration map: I : Ωp(M) → R by I(ω) =

∫
M

ω. Clearly I is a linear map. Because the

integral of any exact differential form is zero (by Stokes’ theorem), we get that I decends to a linear map on Hq
dR(M),

i.e., we now have a linear I : Hq
dR(M)→ R. Necessarily we have that Ωn(M) = Cn(M) for an n-manifold M . Recall

that any orientable n-manifold has a nonvanishing n-form.
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Proposition 2 (Top Cohomology and Orientability). Let M be a compact, connected, smooth n-manifold.

(1) If M is orientable, the map I : Hn
dR(M)→ R is an isomorphism.

(2) If M is nonorientable, then Hn
dR(M) = 0.

2. Smooth Singular Homology
Definition 3. If M is a smooth manifold, and ∆q is the standard q-simplex, define a smooth q-simplex in M
to be a smooth map σ : ∆q → M . (Smooth in the sense that at every point there is a smooth extension to an open
neighborhood of the point.) Denote the subset of Cq(M) generated by smooth q-simplices by C∞q (M) and call it the

qth-smooth chain group. The elements of these groups are called smooth chains. Because of this, we may define
the qth smooth singular homology group of M to be

H∞q (M) = Ker {∂ : C∞q (M)→ C∞q−1(M)}/ Im {∂ : C∞q+1(M)→ C∞q (M)}.

Since the inclusion map ι : C∞q (M) ↪→ Cq(M) commutes with ∂, we get an induced map on homology ι∗ :
H∞q (M)→ Hq(M) given by ι∗([c]) = [ι(c)]. In fact:

Theorem 4. For any smooth manifold M , the map ι∗ : H∞q (M)→ Hq(M) induced by inclusion is an isomorphism.

Proof. See John Lee’s “Introduction to Smooth Manifolds” pgs.417-424. The basic idea of the proof is to get a
homotopy between a smooth q-simplex and a regular q-simplex using the Weierstraβ smooth approximation theorem.

�

Curiously, it works out, much to our convienence, that Hq(M ;R) ∼= Hom(Hq(M),R) ∼= Hom(H∞q (M),R).

3. The DeRham Theorem

For a smooth manifold M , ω ∈ Ωq(M) and σ ∈ C∞q (M), define the integral of ω over σ to be∫
σ

ω =

∫
∆q

σ∗ω.

It is, in fact, because of this that we want to look as smooth simplices in M since we can only pull back a differential
form under a smooth map.

Theorem 5 (Stokes’ Theorem for Chains). If c is a smooth q-chain in a smooth manifold M , and ω is a smooth
(q − 1)-form on M , then ∫

∂c

ω =

∫
c

dω.

This theorem furnishes a linear map:
η : Hq

dR(M)→ Hq(M ;R)

called the deRham homomorphism and is defined by:

η([ω])[c] =

∫
c̃

ω

where [ω] ∈ Hq
dR(M), [c] ∈ Hq(M) ∼= H∞q (M), and c̃ is any representative of [c].

The deRham homomorphism is natural, that is, given a smooth map F : M → N of manifolds, the following
diagram commutes:

Hq
dR(N)

F∗
//

η

��

Hq
dR(M)

η

��
Hq(N ;R)

F∗
// Hq(M ;R)

Before we can prove the main attraction, we need three definitions:

Definition 4 (deRham Manifold). We say a smooth manifold M is a deRham manifold if the map η : Hq
dR(M)→

Hq(M ;R) is an isomorpism for each q. (This definition is diffeomorphism invariant by the naturality of η.)
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Definition 5 (deRham Cover). If M is a smooth manifold, then an open cover {Ui}i∈I is called a deRham cover
if each Ui is a deRham manifold. A deRham cover that is also a basis for M is called a deRham basis of M .

Theorem 6 (The deRham Theorem). For every smooth manifold M and every q ∈ N0, the deRham homomorphism
η : Hq

dR(M)→ Hq(M ;R) is an isomorpism.

Idea of Proof. This proof will be broken into 6 steps:

(1) If {Mj}j∈J is any countable collection of deRham manifolds, then their disjoint union is deRham.

Use that fact that if M =
⊔
j∈J

Mj , the inclusion maps ιj : Mj ↪→ M induces an isomorphism from the

cohomology of the disjoint union to the product of the cohomologies of each Mj (both deRham and singular
cohomology). Then naturality preserves these isomorphisms.

(2) Every convex open subset of Rn is deRham.
Use the Poincaré lemma to get isomorphisms for q > 0 and just show that both zeroth cohomologies are one
dimensional and that η is not the zero map here.

(3) If M has a finite deRham cover, then M is deRham.
Use induction on the number of open sets. Use the Mayer-Vietoris sequence on both deRham and singular
cohomology and link them with η which says that you get commutative squares, then use the five lemma.
For the case of a cover with 2 sets, Mayer-Vietoris gives:

Hq−1
dR (U)⊕Hq−1

dR (V ) //

η

��

Hq−1
dR (U ∩ V ) //

η

��

Hq
dR(M) //

η

��

Hq
dR(U)⊕Hq

dR(V ) //

η

��

Hq
dR(U ∩ V )

η

��
Hq−1(U ;R)⊕Hq−1(V ;R) // Hq−1(U ∩ V ;R) // Hq(M ;R) // Hq(U ;R)⊕Hq(V ;R) // Hq(U ∩ V ;R)

and by naturality of η all of these squares commute. By assumption the 1st, 2nd, 4th, and 5th η’s are
isomorphisms, so by the five lemma, since the Mayer-Vietoris sequences are exact, the 3rd must also be an
isomorphism.

(4) If M has a deRham basis, then M is deRham.
Use an exhaustion function (a continuous function f : M → R such that Mc = {m ∈M | f(m) ≤ c} is compact, in fact, every smooth manifold admits a smooth positive exhaustion function)
to construct a basis and use steps 1 and 3 to show it is a deRham basis and that M is deRham.

(5) Any open subset of Rn is deRham.
If U ⊂ Rn is open, then it has a basis consisting of open balls, which are convex as are their intersections.
Thus U is deRham by steps 2 and 4.

(6) Every smooth manifold is deRham.
Every smooth manifold has a basis of coordinate charts. Each coordinate chart is diffeomorphic to an open
subset of Rn (and their intersections are too). Thus every smooth manifold has a deRham basis by step 5,
and hence is deRham by step 4.

�

To conclude, let’s answer the question of why anyone should care about this:

Obviously this theorem establishes a connection between the topological and analytic properties of a smooth
manifold. For example, if one knows something about the topology of the manifold, you could infer things about
differential equations such as dω = η on M ; and conversely.


